
SA367 Mathematical Models for Decision Making Spring 2018 Uhan

Lesson 3. An Introduction to Jupyter and Python

What is Jupyter?

● Jupyter is an interactive computational environment where you can combine code, text and graphs.

● Until recently, Jupyter was called IPython Notebook. _is historical tidbit might help if you’re looking for other
references.

● We’ll be using Jupyter with the Python programming langugage in this course to:

○ set up data for various models from large-scale real-world sources, and
○ solve these models and interpret their output.

Structure of a notebook document

● A notebook consists of a sequence of cells of diòerent types.

● We’ll use these types of cells frequently:

○ code cells
○ Markdown cells

● You can determine the type of a cell in the toolbar.

● You can run a cell by:

○ clicking the Run button in the tool bar,
○ selecting Cell→ Run Cells in the menu bar,
○ pressing Shi�-Enter

Code cells

● In a code cell, you can edit and write Python code.

○ We’ll talk about Python shortly.

● For now, we can use a code cell as a fancy calculator.

● For example, in the code cell below, let’s compute

25 − 368
23 + 18

In [2]: (2**5 - 368) / (23 + 18)

Out[2]: -8.195121951219512

● Note that a code cell has

○ an input section containing your code,
○ an output section a�er executing the cell.

1



Markdown cells

● In aMarkdown cell, you can enter text to write notes about your code and document your work�ow.

● For example, this cell is a Markdown cell.

● _eMarkdown language is a popular way to provide formatting (e.g. bold, italics, lists) to plain text. Use Google
to ûnd documentation and tutorials. Here’s a pretty good cheat sheet.

● For now, here are a few basic, useful Markdown constructs:

You can format text as italic with *asterisks* or _underscores_.

You can format text as bold with **double asterisks** or __double underscores__.

To write an bulleted list, use *, -, or + as bullets, like this:

* One
* Two
* Three

● To edit a Markdown cell, double-click it. When you’re done editing it, run the cell.

● Try it in the cell below:

Double-click to edit this cell. Try out Markdown here.

Manipulating cells

● You can insert a new cell by selecting Insert→ Insert Cell Above/Below in the menu bar.

● You can copy and paste cells using the Edit menu.

● You can also split, merge, move, and delete cells using the Edit menu.

Saving your notebook

● Jupyter autosaves your notebook every few minutes.

● To manually save, click the icon, or select File→ Save and Checkpoint.

● To close the notebook, select File→ Close and Halt.

○ You should always close the notebook this way!
○ Just closing the tab/window will leave the notebook running in the background.
○ You can get a list of running notebooks in the Running tab of the Jupyter dashboard (the main Jupyter

screen).

Moving on...

● We’ll go over some other features of Jupyter later.

● _e oõcial documentation is here.

● _ere are many resources out there on using Jupyter — Google is your friend!

2

https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet
http://jupyter-notebook.readthedocs.io/en/latest/


https://xkcd.com/353/

3



What is Python— and why?

● Python is a free, open-source, general-purpose programming language.

● Python is popular and used everywhere — a few examples:

○ YouTube

○ Industrial Light and Magic

○ AstraZenica

● Python is "beautiful": its syntax was designed with an emphasis on readability.

● Python has awesome scientiûc computing tools: SciPy.org.

● "It’s good for you": having exposure to multiple programming languages will be very useful to you as a {data
scientist, economist, operations researcher, quantitative analyst, statistician, etc}.

A survival course in Python

● In this lesson, we will learn some basic Python concepts that will be useful in this course.

● We will cover other concepts throughout the semester as needed.

● _ere is a wealth of information on Python on the web!

● Here is the documentation for Python 3.5, which is the version we will use in this class.

Fancy calculator

● You can deûne a variable using the = sign.

● You can perform arithmetic operations on variables.

● You can print the value of a variable using the print() function.

● Don’t forget to run the cell when you’re done!

In [3]: # This is what a comment looks like in Python
# Define dimensions of a rectangle
length = 30
width = 40

# Compute area
area = length * width

# Print area
print(area)

1200

● If you try to access a variable you haven’t yet deûned, Python will complain.

4

http://www.slideshare.net/didip/super-sizing-youtube-with-python
https://www.python.org/about/success/ilm/
https://www.python.org/about/success/astra/
http://www.scipy.org
https://docs.python.org/3.5/


In [4]: print(volume)

---------------------------------------------------------------------------

NameError Traceback (most recent call last)

<ipython-input-4-14ae0d839e78> in <module>()
----> 1 print(volume)

NameError: name 'volume' is not defined

● Let’s deûne the height of a box, so we can compute volume.

In [5]: # Define height of box
height = 10

# Compute volume
volume = length * width * height

# Print volume
print(volume)

12000

● Note that the prompt numbers next to the code cells (e.g. In [3] and Out [3]) indicate which cells have been
run and in which order.

● _is is very useful, especially if you are running cells out-of-sequence.

Hello, world!

● Strings are lists of printable characters deûned using either double quotes or single quotes.

● Just like with variables, to print a string, you can use the print() function.

In [6]: # Print "Hello, world!"
print("Hello, world!")

Hello, world!

● You can use the .format() method to insert the value of a variable into a string.

5



In [7]: # Define a variable for your neighbor's name
neighbor = "Nelson"

# Print the value of the 'neighbor' variable
print("My neighbor is {0}.".format(neighbor))

My neighbor is Nelson.

● _e brackets and characters in them (e.g. {0}) are placeholders that are replaced with the arguments passed into
.format().

● In particular,

○ {0} is replaced with the ûrst argument passed into .format(),
○ {1} is replaced with the second argument,
○ {2} is replaced with the third argument,
○ And so on.

● In Python, indexing (that is, counting) starts at 0!

Example. Deûne three variables, left, right, me, containing the names of your neighbors and yourself. Use the
print() function to print the values of these variables in one line.

In [8]: # Define variables
left = "Alice"
right = "Carol"
me = "Nelson"

# Print values of variables
print("I'm {0}, my neighbor to the left is {1}, and my neighbor to the right is
{2}.".format(me, left, right))

I'm Nelson, my neighbor to the left is Alice, and my neighbor to the right is Carol.

Lists

● A list is a collection of items that are organized in a particular order.

● You can think of a list as an array or a vector.

● A list is written as a sequence of comma-separated items between square brackets.

In [9]: # Define a list containing the first 5 square numbers
squares = [0, 1, 4, 9, 16]

# Define a list containing the days of the week
days_of_the_week = ["Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"]

● To get the ûrst item in days_of_the_week, we would write

days_of_the_week[0]

● Remember, in Python, indexing starts at 0!

6



In [10]: # The third day of the week is...
print(days_of_the_week[2])

Tue

● You can add items to the end of a list using the .append() method.

● You can also print lists just like any other variable.

In [11]: # Let's add the 6th squared number
squares.append(25)

# What does the list look like now?
print("squares = {0}".format(squares))

squares = [0, 1, 4, 9, 16, 25]

● We can determine the length of a list using the len() function.

In [12]: # How many days of the week are there?
len(days_of_the_week)

Out[12]: 7

Dictionaries

● A dictionary is another way to organize a collection of items.

● A dictionary maps keys to values.

○ Just like a real-world dictionary maps words to deûnitions.

● We can create a dictionary by starting with an empty dictionary and adding key-value pairs.

● You can also print dictionaries just like any other variable.

In [13]: # Create empty dictionary
mid = {}

# Add key-value pairs
mid["First Name"] = "Nelson"
mid["Last Name"] = "Uhan"
mid["Company"] = 0

# Print the dictionary
print(mid)

{'Last Name': 'Uhan', 'First Name': 'Nelson', 'Company': 0}

● Similar to a list, we can use a key to look up the corresponding value in a dictionary as follows:

7



In [14]: # The last name of this mid is...
print(mid["Last Name"])

Uhan

Loops and nesting

● We can iterate through lists using the for statement.

In [15]: # Define a list containing the months of the year
months_of_the_year = ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep",
"Nov", "Dec"]

# Print the months of the year, one by one
for month in months_of_the_year:

print(month)

Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Nov
Dec

● Python deûnes blocks of code using a colon ( : ) followed by indentation.

● _e above code is NOT the same as

for month in months_of_the_year:
print(month)

● Always use the Tab key to indent – this will keep your indentation consistent.

● O�en we will want to write a for loop over consecutive integers. We can do this using the range() function.

● range(n) is equivalent to to the list [0, 1, ..., n - 1]

● range(start, stop) is equivalent to the list [start, start + 1, ..., stop - 1]

In [16]: # First 10 integers, starting at 0
for i in range(10):

print(i)

0
1
2
3

8



4
5
6
7
8
9

In [17]: # Integers between 3 and 8 inclusive
for i in range(3, 9):

print(i)

3
4
5
6
7
8

● Technically, range(n) and range(start, stop) aren’t really lists. But it’s OK to think of them as lists for now.

Example. Write code to create a list of the ûrst 10 cubic numbers, starting with 03. Print the list.

Hint. Start by creating an empty list:

cubics = []

_en append to this list using a for loop.

In [18]: cubics = []
for i in range(10):

cubics.append(i**3)

print(cubics)

[0, 1, 8, 27, 64, 125, 216, 343, 512, 729]

If this, then that

● _e == operator performs equality testing:

○ If the two items on either side of == are equal, then it returns True.
○ Otherwise, it returns False.

In [19]: # Let's define today to be Tuesday
today = "Tuesday"

In [20]: # Is today Thursday?
today == "Tuesday"

Out[20]: True

9



In [21]: # Is today Friday?
today == "Friday"

Out[21]: False

● Conditional statements are written using the same block/indentation structure as for statements, using the
keywords if, elif, and else.

In [22]: # Today is...
today = "Saturday"

# What should I do?
if today == "Friday":

print("Go out.")
elif today == "Saturday":

print("Have fun.")
else:

print("Study.")

Have fun.

● Other types of comparisons:

Comparison Meaning

== equal
!= not equal
< less than
> greater than
<= less than or equal
>= greater than or equal

Example. Using if-elif-else statements, write code to only print the ûrst 10 cubic numbers (03, 13, 23, 33, ...) that are
greater than 100. Your output should look something like this:

The cube of 5 is 125.
The cube of 6 is 216.

and so on.

In [23]: for i in range(10):
if i ** 3 > 100:

print("The cube of {0} is {1}.".format(i, i**3))

The cube of 5 is 125.
The cube of 6 is 216.
The cube of 7 is 343.
The cube of 8 is 512.
The cube of 9 is 729.

10



Advanced Jupyter features that might be useful

Keyboard shortcuts

● _ere are keyboard shortcuts, but they can be a little tricky to use. Take a look at Help→ Keyboard Shortcuts.

● If you click in the text box of a code cell or double-click in a Markdown cell, then it is outlined by a green box.
_is is called Edit Mode.

● If you click on the side of a code cell, then it is outlined by a blue box. _is is called CommandMode.

● Here are two really useful keyboard shortcuts:

○ Indenting multiple lines. In Edit Mode, highlight the lines you want to indent, and then press Tab. If you
want to de-indent them (i.e. indent them to the le�), press Shi�-Tab.

○ Line numbers. In Command Mode, press L to show/hide line numbers in the cell.

In [24]: # Try turning on and turning off line numbers in this cell.
# Play around with indenting and de-indenting code.
# Read the code in this cell. Make sure you understand what it does!
student_names = ["Amy", "Bob", "Carol"]
for name in student_names:

print("The name of this student is {0}.".format(name))

english_words = ["home", "navy"]
spanish = {}
spanish["home"] = "casa"
spanish["navy"] = "armada"

for word in english_words:
print("The Spanish word for {0} is {1}.".format(word, spanish[word]))

The name of this student is Amy.
The name of this student is Bob.
The name of this student is Carol.
The Spanish word for home is casa.
The Spanish word for navy is armada.

Running multiple cells

● You can run all the cells in a notebook by selecting Cell→ Run All.

● You can run all the cells above/below the current cell by selecting Cell→ Run All Above/Below.

Clearing the output of code cells

● You can clear the output of a code cell by selecting Cell→ Current Output→ Clear.

● You can clear the output of all code cells by selecting Cell→ All Output→ Clear.

11


	What is Jupyter?
	Structure of a notebook document
	Code cells
	Markdown cells

	Manipulating cells
	Saving your notebook
	Moving on...
	What is Python — and why?
	A survival course in Python
	Fancy calculator
	Hello, world!
	Lists
	Dictionaries
	Loops and nesting
	If this, then that
	Advanced Jupyter features that might be useful
	Keyboard shortcuts
	Running multiple cells
	Clearing the output of code cells


